Chem. 550
Instructor: Nancy Makri

CLASSICAL MECHANICS PROBLEM 1

A particle in one dimension is experiencing a harmonic potential

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2} .
$$

a) Write the Lagrangian function for this system.
b) Write the Euler-Lagrange equation of motion.
c) Transform the Lagrangian to obtain the Hamiltonian function.
d) Write Hamilton's equations of motion.
e) Show that the Euler-Lagrange equations are equivalent to Hamilton's equations.
f) These equations have two linearly independent solutions, which are sine and cosine functions. Show that the function

$$
x(t)=x_{0} \cos \omega t+\frac{p_{0}}{m \omega} \sin \omega t,
$$

along with an expression for $p(t)$ which you should obtain, satisfies Hamilton's equations of motion for the initial conditions x_{0}, p_{0}.

