Chem. 542
Instructor: Nancy Makri

Time Evolution Basics - Problem 1

For a particle in one dimension with Hamiltonian

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V(\hat{x})
$$

show that the equations of motion for the expectation values of the position and of the momentum follow Newton's laws; i.e.,

$$
\frac{d}{d t}\left\langle x_{t}\right\rangle=\frac{\left\langle p_{t}\right\rangle}{m}, \quad \frac{d}{d t}\left\langle p_{t}\right\rangle=\left\langle f_{t}\right\rangle
$$

where $f=-d V / d x$ is the force acting on the system. This is known as Ehrenfest's theorem.

