Chem. 542
Nancy Makri

Time-Dependent Perturbation Theory - Problem 3

Consider a symmetric two-level system described by the usual Hamiltonian,

$$
\hat{H}=-\hbar \Omega(|R\rangle\langle L|+|L\rangle\langle R|)
$$

whose eigenstates are separated by the tunneling splitting $2 \hbar \Omega$. The system is in its ground state. Suppose at $t=0$ the TLS begins to interact with an external field, which changes the Hamiltonian by the term

$$
\hat{V}=\mathscr{E}(|R\rangle\langle R|-|L\rangle\langle L|) .
$$

Use first order perturbation theory to calculate the probability of finding the TLS in the excited state, as a function of time.

