Chem. 542
Instructor: Nancy Makri

## Normal Modes - Problem 2

Apply the normal mode transformation to a diatomic molecule $A B$ in three dimensions, where the two atoms have masses $m_{1}$ and $m_{2}$ and are constrained to move along a fixed line. Assume the potential interaction between the two atoms is quadratic, i.e.,

$$
V(\mathbf{r})=\frac{1}{2} k\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]
$$

where $x_{i}, y_{i}, z_{i}$ are the Cartesian displacement coordinates.

Your normal mode frequencies should be identical to those you found in the 1D case. In fact, even though you are working in 3D, this is effectively a 1D problem. The reason is that the given form of the potential is correct only if the molecule is oriented along a fixed axis. (Otherwise we should subtract the equilibrium bond length from the interatomic distance, and we wouldn't be able to get it in this form!)

