Problem io

$$
\text { Assuming }|L\rangle=\binom{1}{0} \text { and }|R\rangle=\binom{0}{1}
$$

I Part (a)

$$
\begin{aligned}
\rho & =\frac{1}{2}(|R\rangle\langle R|+|L\rangle\langle L|)+\frac{1}{4}(|R\rangle\langle L|+|L\rangle\langle R|) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{1}{4}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2}
\end{array}\right) \\
\operatorname{Tr}[\rho] & =\frac{1}{2}+\frac{1}{2} \\
& =1
\end{aligned}
$$

2 Part (b)

In its eigenbasis, a matrix is the diagonal matrix of its eigenvalues.

$$
\begin{aligned}
\rho & =\left(\begin{array}{cc}
0.5 & 0.25 \\
0.25 & 0.5
\end{array}\right) \\
\operatorname{det}\left(\begin{array}{cc}
0.5-\lambda & 0.25 \\
0.25 & 0.5-\lambda
\end{array}\right) & =0 \\
(0.5-\lambda)^{2}-0.25^{2} & =0 \\
\Rightarrow(0.5-\lambda-0.25)(0.5-\lambda+0.25) & =0 \\
\Rightarrow \lambda & =0.25 ; 0.75 \\
\therefore \rho & =\left(\begin{array}{cc}
0.25 & 0 \\
0 & 0.75
\end{array}\right) \\
\operatorname{Tr}[\rho] & =0.25+0.75 \\
& =1
\end{aligned}
$$

3 Part (c)

$$
\begin{aligned}
\rho & =\left(\begin{array}{cc}
0.25 & 0 \\
0 & 0.75
\end{array}\right) \\
\rho^{2} & =\left(\begin{array}{cc}
0.0625 & 0 \\
0 & 0.5625
\end{array}\right) \\
\operatorname{Tr}\left[\rho^{2}\right] & =0.0625+0.5625 \\
& =0.625 \neq 1
\end{aligned}
$$

So, this is a mixed ensemble.

4 Part (d)

$$
\begin{aligned}
S & =-k_{B} \sum_{n} P_{n} \log \left(P_{n}\right) \\
& =-k_{B}(0.25 \log (0.25)+0.75 \log (0.75)) \\
& =0.56233 k_{B}
\end{aligned}
$$

